

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester II

Course Code: 102320203

Course Title: Finite Element Analysis

Type of Course: Core Course V

Course Objectives: The subject aims to understand the numerical methods for solving governing equations of basic Mechanical systems. This course also introduces the fundamentals of dynamic and non-linearity conditions.

Teaching & Examination Scheme:

Conta	Contact hours per week			Examination Marks (Maximum / Passing)				
T 4	T	Deve et la cl	Credits	Inte	rnal	External		Tatal
Lecture	Tutorial	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30/15	20/10	70/35	30/15	150/75

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours			
1	Introduction: Basic concepts, Historical back ground, Applications, Comparison of				
	FEM with other methods, Variational approach, Glerkin's approach, Co-ordinate				
	systems, Element shapes, Interpolation function, Virtual energy principle, Rayleigh-				
	Ritz method, Properties of stiffness matrix, Treatment of boundary conditions,				
	Solution of system of equations, Shape functions and characteristics, Basic equations				
	of elasticity, Strain-Displacement relationship.				
2	1-D Structural Problems: Axial bar element, Stiffness matrix, Load vector,	9			
	Temperature effects, Quadratic shape functions and Problems. Analysis of Trusses,				
	Plane Truss and Space Truss elements and problems. Analysis of Beams, Shape				
	functions, Stiffness matrix, Load vector and Problems.				
3	2-D Structural Problems: Formulation of triangular elements, CST and LST, Force	9			
	terms, Stiffness matrix and Load vectors, Boundary conditions, Iso- Sub- Super				
	parametric elements, Quadrilateral elements, Shape functions, Numerical				
	Integration. Finite element modelling of Axi-symmetric solids subjected to Axi-				
	symmetric loading. Introduction to Torsional problems.				

Page 1 of 3

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

4	Scalar Field Problems: 1-D Heat conduction formulation of slabs and fins, Problems.		
	2-D heat conduction formulation and problems.		
5	Dynamic Problems: Formulation, Consistent and lumped mass matrices, Solution of	6	
	eigenvalue problems, Transformation methods, Jacobi method, Vector Iteration and		
	Subspace Iteration Methods.		
6	Non-Linearity: Introduction and types of non-linearity, Formulation of geometrical	2	
	and material nonlinearity		

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks				y Mark	S	R : Remembering; U : Understanding; A :
R	U	Α	Ν	Ε	С	Application,
15	15	25	20	15	10	N: Analyze; E: Evaluate; C: Create

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	A First Course in the Finite Element Method, D Logan, Thompson Learning.	
2	Concepts and Applications of Finite Element Analysis, R D Cook, D S Malkus, M E Plesha, and	
	R J Witt, Wiley.	
3	Text book of Finite Element Analysis, Seshu P., PHI.	
4	Finite Element Procedures, Bathe K. J., PHI.	
5	Introduction to Finite Elements in Engineering, Chandrupatla T. R. and Belegunda A. D.,	
	PHI.	
6	The Finite Element Method - A Practical Course, Liu G. R. and Quek S. S., Butterworth	
	Heinemann.	
7	Finite element Method in Engineering, S S Rao, Elsevier.	

Course Outcomes (CO):

Sr.	Course Outcome Statements %w			
CO-1	Understand the concept of FEM and develop algorithms for analysis of various mechanical systems.	20		
CO-2	Apply the knowledge of FEA to perform 1D stress and heat transfer analysis.	30		
CO-3	Formulate and solve problems related to trusses and beams.	30		
CO-4	Develop 2D Finite Element formulation for triangular and quadrilateral elements.	15		
CO-5	Analyse dynamic problems and non-linearity presents in geometry and material	5		

Page 2 of 3

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

List of Practicals / Tutorials:

1	Introduction about FEA software package.
2	Understand the procedure and execute 1-D structural analysis using FEA software.
3	Exercise on plane and space Truss problems using FEA software
4	Exercise on Beam problems with different boundary and loading conditions using FEA
	software.
5	Analyse the effect of element formulation and number of elements in 2D structural problems
	using different element types in FEA software.
6	Understand the procedure and execute 1-D steady state heat transfer problems using FEA
	software.
7	Understand the procedure and execute 2D steady state heat transfer problems using FEA
	software.
8	Exercise on Torsional Problems using FEA software.
9	Modal Analysis of Cantilever beam for natural frequency determination.
10	Exercise on Dynamic problems using FEA software.

Supplementary learning Material:

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		

Page **3** of **3**

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in